JAPANESE

Research Division

Innovative Materials Science Pioneered by Chiral Photonics

Understanding the universal property of chirality could lead to new materials and technologies for photonics and other applications

Of the many mysteries still to be unraveled in the natural sciences, one of the most compelling is the origin and power of chirality — the property of a molecule or object that has two mirror-image forms — like our left and right hands.

Chirality is universal in biology, chemistry and physics. It critically affects the biochemical processes underpinning life, is a vital aspect of drug discovery, and crops up in particle physics. Light can have chiral properties that affect how it interacts with matter. How can the power of chirality be harnessed and controlled? And what new discoveries and technologies might this give rise to? These are some of the questions Takashige Omatsu and his team are asking.

Light beams can be chiral when they are imparted with so-called helical wavefronts, that is, polarity that rotates either left or right. “We can use ‘optical vortices’ to twist the physical properties of metals, semiconductors and organic materials on the nanoscale to create chiral nanostructures with unique features,” says Omatsu.

“Our goal is to establish chiral photonic materials as an original research field and to pioneer new technologies such as chiral plasmonics and metasurfaces for nanoscale chiral chemical reactors, chiral-selective imagers and chiral sensors,” he explains.

Omatsu and his team focus on the interaction between helical light and materials, and the physical properties and potential uses of such modified materials. The electromagnetic field of helical light rotates as the light moves through space. When this electromagnetic field interacts with conductive materials like metals, nanoscale corkscrew-like variations in physical properties can be inscribed on the material’s surface. The modified surface can then react differently to left- and right-handed chiral molecules or helical light, giving rise to a range of interesting possibilities for chemical sensing, synthesis and imaging.

“We can use helical light to create nanostructures such as twisted needles, twisted reliefs and twisted fibers,” says Omatsu. “We have also found that the same process can polymerize fullerene — a well-known functional organic molecule that is normally not conductive. This causes fullerene to form a novel conductive metallic phase, which could be used as the basis for fabricating electronic devices without metals and semiconductors.”

Omatsu believes that ‘nanovortices’ will one day be used for nanoscale precision control of light polarization, electron orbital motion and the aggregation of chiral molecules.

“Our research will lead to the development of advanced materials for next-generation photonics and electronics, and new applications in chemical synthesis, pharmacy, biology and medicine,” he says. “It might also allow us one day to answer the scientific mystery: ‘Why does handedness exist in nature?’”

Omatsu has collaborated with many Japanese and international researchers, and he is always looking for students and early career researchers to join collaborative projects.

“Our research center brings together physicists, chemists, biologists and even medical doctors to work together, and we frequently have brain-storming meetings to think up ideas for new collaborative research projects,” he says. “Several international researchers work here as faculty members. There is a wonderful diversity of backgrounds and expertise.”

Members

Principal Investigator
Name Title, Affiliation Research Themes
Takashige OMATSU 

Professor, Graduate School of Engineering  

Photonix
Co-Investigatior
Name Title, Affiliation Research Themes
Hisao ISHII Professor, Center for Frontier Science

Organic Electronics

Masami SAKAMOTO Professor, Graduate School of Engineering Organic Chemistry
Takeshi MURATA Professor, Graduate School of Science Asymmetric Synthesis Structural Biology
Peter KRUGER Professor, Graduate School of Engineering Structural Biology
Kazuyuki SAKAMOTO Professor, Graduate School of Engineering Organic Chemistry, Asymmetric Synthesis
Hiroyuki YOSHIDA Professor, Graduate School of Engineering Organic Electronic Properties of Solids
Kenichi OTO Professor, Graduate School of Science Semiconductor Physics
Toyokazu YAMADA

Associate Professor, Graduate School of Engineering

Scanning Tunneling Spectroscopy Nanomaterials
Nobuyuki AOKI Associate Professor, Graduate School of Engineering Semiconductor Materials
Kazuki NAKAMURA Associate Professor, Graduate School of Engineering Optical Materials
Takayoshi ARAI Professor, Graduate School of Science

Organic Synthetic Chemistry

Atsushi NISHIDA

Professor, Graduate School of Science

Organic Synthetic Chemistry
Akira YANAGISAWA Professor, Graduate School of Science Organic Synthetic Chemistry
Midori ARAI Associate Professor, Graduate School of Pharmaceutical Science

Natural Products Chemistry
Bio-organic Chemistry

Shiki YAGAI Professor, IGPR Materials Chemistry
Kazuhiro YOSHIDA Associate Professor, Graduate School of Science Organic Synthetic Chemistry
Tetsuhiro NEMOTO Professor, Graduate School of Pharmaceutical Science Organic Synthetic Chemistry
Motohiro AKAZOME Associate Professor, Graduate School of Engineering Organic Crystal Chemistry
Akira MATSUURA Professor, Graduate School of Science Molecular and Cellular Biology
Yoshihiro NISHIDA

Professor, Graduate School of Horticulture

Bio-organic Chemistry, Glycotechnology
Kohji ITO Professor, Graduate School of Science Biochemistry, Plant Physiology
Hiroki TAKAHASHI Associate Professor, Medical Mycology Research Center Bioinformatics
Daisuke UMENO Associate Professor, Graduate School of Engineering Synthetic Biology, Microbiological Engineering
Naohiko ANZAI

Professor, Graduate School of Medicine

Pharmacology
Keisuke IIDA Associate Professor, Graduate School of Engineering

Organic Synthesis, Medicinal Chemistry

Satoshi OGASAWARA Specially Appointed Associate Professor, IGPR Antibody Engineering
Related links